The Application of Post-Market Monitoring to Novel Foods

An Expert Group Opinion,
ILSI Europe Novel Foods Task Force.

Presented by Anne Constable,
Nestle Research Centre, CH
ILSI

- Scientific Platforms > Clusters > Task Forces
- Assessment of Benefits and Risks
- Novel Foods (and Nanotechnology) Task Force

Objective

- To review how novel foods, novel food ingredients and new processing techniques should be evaluated scientifically from the safety and nutritional viewpoints
 - Expert Groups
 - Workshops
 - Concise monographs
 - ILSI Reports
 - Publications
• Approval required if not used for human consumption in the EU community before 15 May 1997 and fall into the following categories
 – new or intentionally modified primary molecular structure;
 – consisting of, or isolated from, micro-organisms, fungi or algae;
 – consisting of, or isolated from plants, or food ingredients isolated from animals except for those obtained by traditional propagating or breeding practices, and having a history of safe food use;
 – or has been applied a production process not currently used, resulting in significant changes in the composition/structure which affect their nutritional value, metabolism or level of undesirable substances;

• If substantially equivalent to existing foods with a history of safe use, then a simplified notification procedure can be used

• Produced from GM sources (EC 1829/2003)
Food and Chemical Toxicology 2007, 45: 2513-2525

History of Safe Use = Established Safety Profile

- Foods prepared and used in traditional ways (cultural practises) considered to be safe for the consuming population on basis of long-term human experience
- A level of safety, subject to appropriate risk management procedures, which is regarded as ‘acceptable’ by consumers of traditional food
- A body of knowledge on which to establish the existing safety profile of a food, with known limitations
Safety Assessment of (Novel) Foods: Case by Case

- **Analytical/compositional/nutritional characteristics of the novel food**
 - Source of material / Changes due to new processing

- **Previous history of human exposure**
 - Comparison to traditional counterpart (if available)

- **Expected applications and the *predicted* exposure**
 - Purpose
 - Food categories and Use levels (usually worst-case; over-estimates)

- **Neccessity, appropriateness and outcome of safety studies**
 - Fate in biological systems
 - Standard toxicology, feeding studies
 - Focused toxicity studies
 - Allergenicity
 - Human studies: focused effects, target populations, efficacy….

Intern J Food Sciences and Nutrition 2003, 54: 1-32
Ultimate Aims

• Risk Assessment (- ADI?)
 – f (Hazard x Exposure)

• To inform Risk Management decisions and Risk Communication
 – Regulatory Approval (or not);
 – Conditions/ limitations,
 – labelling as conditions of approval?

• Ensure foods placed commercially on the market are safe for the consumer and do not present undue risk

• Safe for the intended uses and Compliant with legislation
Concept of Post-launch monitoring?

• No mandatory requirement

• ‘PMM should, where appropriate, be performed for foods derived from genetically modified sources, specifically where there is no traditional comparator available’. (EFSA, 2004, 2006)

• PMM data ‘will provide additional reassurance regarding long term safety of products, as well as their impact on the food supply’ (FSANZ, 2005)

• Condition for approval of phytosterol esters in fat spreads in EU
 ‘Establish a surveillance programme accompanying the marketing of the product …… in order to estimate the extent to which the product is reaching its target group, … and to estimate exposures to phytosterols from this source in other population groups……’

 (Committee Decision 2000/500/EC)
• Post Market Surveillance (PMS)
• Post Market Monitoring (PMM)
• Post Launch Monitoring (PLM)
• Pharmacovigilance for Drugs
• Cosmetovigilance for Cosmetics

• PMM : a hypothesis driven, scientific methodology for obtaining information through consumer investigations relevant to the safety of a novel food after market launch (ILSI 2008).
PMS Medicines

- Prescriptive
- Specific population
- Pharmacies
- Small patient base
- Medical condition
- Health professionals
- Clear dose, cause vs effect

PMM Foods

- No controls
- General population
- Freely available
- Large consumer base
- Health status unknown
- Consumer carelines
- Causality?
Case Study: Aspartame (additive, sweetener)

- **Reason for PMM**
 - Pre-market assessment: EDI (8.3 - 34 mg/kg bw/d) close to ADI (40 – 50 mg/kg bw/d)
 - Consumer reports of adverse health effects post-launch

- **Methodologies**
 - Intake assessment by household menu survey (market research)
 - Collection and evaluation of anecdotal reports by independent authority (CDC/FDA)

- **Outcome**
 - Intake confirmed to be within limits
 - Safety confirmed by additional targeted studies in humans and animals
 - No link between aspartame consumption and reported adverse events
Case Study: Olestra (fat replacer)

• Reasons for PMM
 – Confirmation of pre-market assumptions concerning intake and consumer nutritional status (fat soluble vitamins), GI effects
 – Precautionary labelling

• Methods
 – Intake assessment in random cross-sectional population study by FFQ
 – Passive monitoring for consumer reports of adverse effects
 – Serum micronutrient levels measured in cohort study

• Outcomes
 – Intake/usage patterns: compliant with pre-market assessment
 – Expected effects confirmed as within background
 – Reported allergic reactions: not confirmed in follow up
 – Targeted clinical study: absence of effect on anti-coagulant medication
 ➢ Labelling removed
Case Study: Fat spreads with Phytosterol esters (cholesterol reduction)

• **Reason for PMM**
 – Condition of pre-market approval to confirm predictions concerning intake and target populations

• **Methods**
 – Intake and pattern of use assessed by market research (direct survey of households)
 – Passive monitoring for consumer reports of adverse effects

• **Outcome**
 – Pre-market assumptions concerning intake and target group confirmed
 – No unexpected effects of any significance observed

More products, continuing monitoring (EFSA 2008, PHYTOST..)
Case Study 4: StarLink Maize (Bt Cry9C; feed)

- **Reason**
 - Consumer complaints of adverse health effects

- **Methods**
 - Collection/evaluation of consumer reports by independent authority
 - Retrospective intake assessment in ‘positive’ cases by chemical analysis of food; measurements of biomarkers (IgE) in subjects

- **Outcome**
 - No association between putative allergic reactions and exposure to StarLink maize
 - No confirmation of allergic potential of Cry9C protein
 - No PMM strategy applied
Possible criteria to trigger a PMM?

Intake
- If EDI is close to ADI - monitor real consumption patterns
- Original application for one product; further applications leading to different exposure patterns
- Product intended for use in foods in certain populations
- Monitor potential non-intended use

Health
- Possible (side-)effects identified in pre-market
- Reassurance of no adverse effects – but need a reasoned hypothesis, system to collect signals.
- If significant number of complaints received?
- If new issues highlighted – further research?
A tool for getting market data which can be used for refinement of the risk assessment

Pre-market safety studies
- Modelling
- In-vitro
- In-vivo
- Human

Risk Assessment
- Intake Estimate
- Hazard characterisation

Risk Management
- Regulatory approval
- Limitations
- Labelling

Launch Product
- Compliance
- Advertising
- Communication

Post-Launch
- PMM
- Intakes
- Health Effects
• Food *supply* data
 – Track production of agricultural commodities
 – Measure volumes *available* for consumption

• *Household* food purchase data
 – National Food Surveys (eg UK - 6000 households since 1940)
 – Commercial market surveys
 – Retailer loyalty card info
 • Out of home?

• Survey of *individual* intake
 – Dietary recalls
• Limitations/developments
 – Traceability (occurrence, food products)
 – Sources of info: Food composition databases (e.g. EuroFIR)
 – Brands v food products v ingredients
 – Statistical modelling: improve predicted intakes
 – Harmonisation of methodologies (different countries)
Methodology : Health Effects (1)

• Company Contact Centres (channels for consumer relations)
 – Collating information from consumers
 – Surveillance, detection of signals for follow-up
 • Reactive, Proactive
 • Specific (branded) food products
 • Contact (culture, country, motivation)
 • Long term effects not identified
 • Quality of information (asked and received)
 • Expert follow-up

• Disease Registers
 – Patient Care, Public Health
 • Planning of public health care
 • Do not cover all diseases
 • Difficult to link with dietary exposures
 • Ethical/data protection
• Epidemiological Studies
 – Prospective studies (forward looking)
 • Monitor dietary practice and monitor health consequences
 – Case control studies
 • Investigate subjects with a particular disease in relation to previous dietary intake

• Needs/Developments/Improvements?
 – Detailed (accurate and continuous) dietary intakes
 – Link health effect to specific food/ingredient?
 – Early predictive (bio)markers of health effects - validation?
 – (Clinical trials in specific populations; v PMM)
Requirements for a PMM?

- Must be hypothesis driven
- Power of methodology employed must be sufficient to meet the needs of the PMM
- Study parameters must be clearly defined
- Timelines
- Adequate traceability and identification of the NF in question
- Reliable assessment of food intake
- Population must be large enough to ensure a statistically valid interpretation
- Collection, validation, recording checked for relevance and veracity by appropriate experts
- Characterised by codification in accordance with internationally recognised systems
- Transparent process fully involving all stakeholders.
- Decision making
Requirements for a hypothesis driven PMM

Regulatory (pre-market assessment)

Voluntary (Product Stewardship)

Formulation
- Generation of hypothesis;
- Agreement of objectives
- Study design/protocol
 Stakeholders
 Industry, regulatory authorities, consumers, health professionals

Contact Centres

Nutrition & Health Status

Intake data

PMM

Peer Review & Assessment
 Independent Expert Body

Options
 Stakeholders
 Industry, regulatory authorities, consumers, health professionals
PMM may be appropriate to:

- Confirm that product use is as predicted in the pre-market assessment

- Provide reassurance that effects observed in the pre-market assessment occur with no greater frequency or intensity in the post-market phase than anticipated

- Investigate the significance of any adverse effects reported by consumers after market launch
Conclusions (2)

• PMM should not replace any steps in the pre-market safety assessment

• PMM should only be used when triggered by specific evidence based questions

• Cannot be used to test hypothesis that effects are absent; it is not possible to prove a negative.
 – Outcome is limited by power and nature of a study possible (duration).
 – *(Can provide a measure of confidence that effects will not occur).*

• Methodologies place limitations on what PMM can achieve
ILSI Europe Novel Foods Expert Group on PMM

- To discuss possibilities and limitations on PMM for Novel Foods
- Discussed in workshop Barcelona 2006.

Dr Heiner Boeing, Dr Andrew Cockburn, Dr Anne Constable, Dr Agnes Davi, Dr Paul Hepburn, Dr John Howlett, Dr Nynke de Jong, Prof Bevan Moseley, Dr Regina Oberdorfer, Dr Claire Robertson, Dr Hans Verhagen, Dr Jean-Michel Wal, Ms Fiona Samuels, Ms Wiebke Tueting, German Inst of Human Nutrition Consultant Nestle Danone Unilever Consultant RIVM, Netherlands Consultant Bayer CropScience University of Westminster, London, UK RIVM, Netherlands Nat Inst Agronomic Research, France ILSI Europe